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Introduction

We present a formalism for inclusive deuteron–induced reactions. We thus
want to describe within the same framework:

Direct neutron transfer: should be
compatible with existing theories.

Elastic deuteron breakup: “transfer”
to continuum states.

Neutron capture and compound nucleus
formation: absorption above and
below neutron emission threshold.

Important application in surrogate
reactions: obtain spin–parity
distributions, get rid of
Weisskopf–Ewing approximation (see
J. Escher’s talk).
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Historical background

breakup-fusionQreactions

protonsQandQαQyields
bombardingQ209BiQwithQ
12CQandQ16OQ

BrittQandQQuinton,QPhys.QRev.Q124Q819617Q877

Kerman and McVoy, Ann. Phys.
122 (1979)197

Austern and Vincent, Phys.
Rev. C23 (1981) 1847

Udagawa and Tamura, Phys.
Rev. C24(1981) 1348

Last paper: Mastroleo,
Udagawa, Mustafa Phys. Rev.
C42 (1990) 683

Controversy between Udagawa
and Austern formalism left
somehow unresolved.
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Inclusive (d , p) reaction

let’s concentrate in the reaction A+d→ B(=A+n)+p

ϕd

χd

ϕA

χp
χn

ϕA

χp

ϕ1,ϕ2,...,ϕn

ϕn+1,ϕn+2,...

χp

BB

B B B

beakup

transfer

capture

we are interested in the inclusive cross section, i.e., we will sum over all
final states φcB .
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Derivation of the differential cross section

the double differential cross section with respect to the proton energy and
angle for the population of a specific final φcB

d2σ

dΩpdEp
=

2π

~vd
ρ(Ep)

∣∣∣〈χpφ
c
B |V |Ψ(+)

〉∣∣∣2 .
Sum over all channels, with the approximation Ψ(+) ≈ χdφdφA

d2σ

dΩpdEp
= − 2π

~vd
ρ(Ep)

×
∑
c

〈χdφdφA|V |χpφ
c
B〉 δ(E − Ep − E c

B) 〈φcBχp|V |φAχdφd〉

χd → deuteron incoming wave, φd → deuteron wavefunction,
χp → proton outgoing wave φA → target core ground state.
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Sum over final states

the imaginary part of the Green’s function G is an operator representation
of the δ–function,

πδ(E − Ep − E c
B) = lim

ε→0
=
∑
c

|φcB〉 〈φcB |
E − Ep − HB + iε

= =G

d2σ

dΩpdEp
= − 2

~vd
ρ(Ep)= 〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉

We got rid of the (infinite) sum over final states,

but G is an extremely complex object!

We still need to deal with that.
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Optical reduction of G

If the interaction V do not act on φA

〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉
= 〈χdφd |V |χp〉Gopt 〈χp|V |χdφd〉 ,

where Gopt is the optical reduction of G

Gopt = lim
ε→0

1

E − Ep − Tn − UAn(rAn) + iε
,

now UAn(rAn) = VAn(rAn) + iWAn(rAn) and thus Gopt are single–particle,
tractable operators.

The effective neutron–target interaction UAn(rAn), a.k.a. optical
potential, a.k.a. self–energy can be provided by structure
calculations (previous talks by W. Dickhoff, C. Barbieri, P. Navratil,
G. Hagen, J. Rotureau, J. Holt...)
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Capture and elastic breakup cross sections

the imaginary part of Gopt splits in two terms

=Gopt =

elastic breakup︷ ︸︸ ︷
−π
∑
kn

|χn〉δ
(
E − Ep −

k2n
2mn

)
〈χn|+

neutron capture︷ ︸︸ ︷
Gopt

†WAn Gopt ,

we define the neutron wavefunction |ψn〉 = Gopt 〈χp|V |χdφd〉

cross sections for neutron capture and elastic breakup

d2σ

dΩpdEp

]capture
= − 2

~vd
ρ(Ep) 〈ψn|WAn |ψn〉 ,

d2σ

dΩpdEp

]breakup
= − 2

~vd
ρ(Ep)ρ(En) |〈χnχp|V |χdφd〉|2 ,
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2–step process

p

n

d

A A

transfer, capture
elastic breakup

p

n

A

G

p

G

B*

to detector

step1

step2

breakup

propagation of n in the field of A
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Austern (post)–Udagawa (prior) controversy

The interaction V can be taken either in the prior or the post
representation,

Austern (post)→ V ≡ Vpost ∼ Vpn(rpn)

Udagawa (prior) → V ≡ Vprior ∼ VAn(rAn, ξAn)

in the prior representation, V can act on φA → the optical reduction gives
rise to new terms:

d2σ

dΩpdEp

]post
=− 2

~vd
ρ(Ep)

[
=
〈
ψprior
n |WAn |ψprior

n

〉
+ 2<

〈
ψNON
n |WAn|ψprior

n

〉
+
〈
ψNON
n |WAn |ψNON

n

〉]
,

where ψNON
n = 〈χp| χdφd〉.
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Neutron states in nuclei

E
-E

F
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scatteringxstates

weaklyxboundxstates

deeplyxboundxstates

Wx9MeV8

EF

Imaginaryxpartxofxopticalxpotential neutronxstates

narrowxsingle-particle

scatteringxandxresonances

broadxsingle-particle

Mahaux,xBortignon,xBrogliaxandxDassoxPhys.xRep.x120x919858x1x
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neutron wavefunctions

the neutron wavefunctions

|ψn〉 = Gopt 〈χp|V |χdφd〉

can be computed for any neutron energy

0 5 10 15 20 25 30
-2

-1

0

1

2

E
n
=2.5 MeV

E
n
=-7.5 MeV

rBn

bound state

scattering state

transfer to resonant and 
non-resonant continuum
well described

these wavefunctions are not eigenfunctions of the Hamiltonian
HAn = Tn + <(UAn)
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neutron transfer limit (isolated–resonance, first–order
approximation)

Let’s consider the limit WAn → 0 (single–particle width Γ→ 0). For an
energy E such that |E − En| � D, (isolated resonance)

Gopt ≈ lim
WAn→0

|φn〉〈φn|
E − Ep − En − i〈φn|WAn|φn〉

;

with |φn〉 eigenstate of HAn = Tn + <(UAn)

d2σ

dΩpdEp
∼ lim

WAn→0
〈χdφd |V |χp〉

× |φn〉〈φn|WAn|φn〉〈φn|
(E − Ep − En)2 + 〈φn|WAn|φn〉2

〈χp|V |χdφd〉 ,

we get the direct transfer cross section:

d2σ

dΩpdEp
∼ | 〈χpφn|V |χdφd〉 |2δ(E − Ep − En)
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Validity of first order approximation

For WAn small, we can apply first order perturbation theory,

d2σ

dΩpdEp
(E ,Ω)

]capture
≈ 1

π

〈φn|WAn|φn〉
(En − E )2 + 〈φn|WAn|φn〉2

dσn
dΩ

(Ω)

]transfer
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completed calculation
firstd order

WAn=0.5dMeV
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we compare the complete calculation with the isolated–resonance,
first–order approximation for WAn = 0.5 MeV, WAn = 0.5 MeV and
WAn = 0.5 MeV
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Observables: elastic breakup and capture cross sections
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elastic breakup and capture cross sections as a function of the proton
energy. The Koning–Delaroche global optical potential has been used as
the UAn interaction (Koning and Delaroche, Nucl. Phys. A 713 (2003)
231).
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Observables: angular differential cross sections (neutron
bound states)
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capture at resonant
energies compared with

direct transfer (fresco)
calculations,

capture cross sections
rescaled by a factor
〈φn|WAn|φn〉π.

double proton differential cross section

d2σ

dΩpdEp
=

2π

~vd
ρ(Ep)

∑
l ,m,lp

∫ ∣∣∣ϕlmlp(rBn; kp)Y
lp
−m(θp)

∣∣∣2W (rAn) drBn.
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Observables: angular differential cross sections (above
neutron–emission threshold)
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Observables: compound nucleus spin and parity
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spin distribution of compound nucleus

dσl
dEp

=
2π

~vd
ρ(Ep)

∑
lp ,m

∫ ∣∣ϕlmlp(rBn; kp)
∣∣2W (rAn) drBn.
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Application to surrogate reactions

B*

B*

Desired reaction: neutron induced fission, gamma emission and 
neutron emission.

The surrogate method consists in producing the same compound 
nucleus B* by bombarding a deuteron target with a radio active 
beam of the nuclear species A.

A theoretical reaction formalism that describes the production 
of all open channels B* is needed.

n

A

A d

fission

gamma
emission

neutron
emission

fission

gamma
emission

neutron
emission

Surrogate for neutron capture
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Surrogate reactions

Younes and Britt, PRC
68(2003)034610

Weisskopf–Ewing
approximation:
P(d , nx) = σ(E )G (E , x)

inaccurate for x = γ and for
x = f in the low–energy regime

can be replaced by P(d , nx) =∑
J,π σ(E , J, π)G (E , J, π, x) if

σ(E , J, π) can be predicted.

0 1 2 3 4 5 6 7
0

5

10

15

20

Ln

σ
 (

m
b/

M
e

V
) Ep=10 MeV

(see J. Escher talk)
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Preliminary comparison with experiment

We show very preliminary results for the 93Nb(d , p) reaction with a 15
MeV deuteron beam (Mastroleo et al., Phys. Rev. C 42 (1990) 683)
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we have used the Koning–Delaroche optical potential

the real part of the optical potential has been shifted to reproduce
the position of the L = 3 resonance

the experimental results seem to be sensitive to the position and
strength of a modest number of resonances
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Summary, conclusions and some prospectives

Reaction formalism for inclusive deuteron–induced reaction.

final neutron states from Fermi energy → to scattering states

2–step reaction mechanism → breakup+absorption

probe of nuclear structure over a wide energy range

need for optical potentials

useful for surrogate reactions

transfer to individual resonances?

extend for (p, d) reactions (hole states)?
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The 3–body model

rAp

rBn

rpn

An

p

rd
θpd

ξA

Bd

rAn

From H to H3B

H = Tp +Tn +HA(ξA) +Vpn(rpn) +
VAn(rAn, ξA) + VAp(rAp, ξA)

H3B = Tp + Tn + HA(ξA) +
Vpn(rpn) + UAn(rAn) + UAp(rAp)
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